

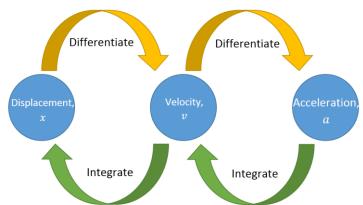
Tracking Systems II

Isayas Adhanom, Computer Science

Tracking in VR

- Track orientation and position of an object.
- Orientation tracking: rotational movements (yaw, pitch and roll)
- Positional tracking: translational movements (sway, heave and surge).

Tracking Position and Orientation


- Involves tracking all 6 DOFs for a moving rigid body.
- The position and orientation of a body is referred as it's pose.
- The most important body to track in VR is the head.

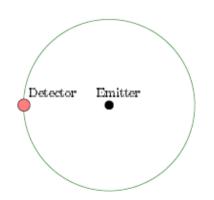
Why not Just Integrate the Accelerometer?

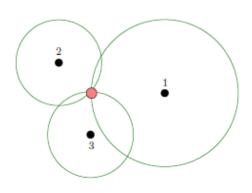
 If gravity component is subtracted from accelerometer output, the remaining part is pure body acceleration.

 We can integrate acceleration twice to obtain displacement.

- What is the problem with this?
 - Drift error grows quadratically.

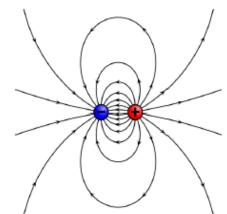
Why not Just Integrate the Accelerometer?


- Accelerometers can not accurately estimate acceleration when the sensor rotates quickly.
- Accelerometers can not distinguish motions with constant velocity.
- IMUs (gyroscope + accelerometer) play an important role in tracking but are not sufficient for positional tracking.

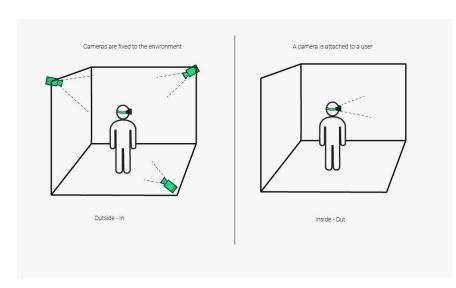

Make Your Own Waves (Active Approach)

- Take an active approach by transmitting waves into the environment.
- Waves perceptible by humans such as light and sound are not preferred.
- Non perceptible waves are preferred, eg: infrared, ultrasound, end electromagnetic fields.

Make Your Own Waves: Ultrasound


- Consider using ultrasound pulse and an emitterdetector pair.
- Calculate time of arrival (TOA).
- Estimate distance based on the propagation speed of sound.
- With four more transmitters the position can be uniquely determined (trilateration).
- Drawback: Reverberations could cause the pulse to be received multiple times at each detector.

Make Your Own Waves: Magnetic Fields


- Emitting a complicated field that varies over the tracking area.
- The position and orientation of a body in the field could be estimated.
- Drawback: the field may become unpredictably warped.
- This could cause straight-line motions to be estimated as curved.

Line of Sight (Visibility) Methods

- Identify special parts of the physical world (features).
- Calculate the positions of the features along a LOS ray to a known location.
- Features should be distinguishable.
- Features could be natural/artificial.

Artificial Features

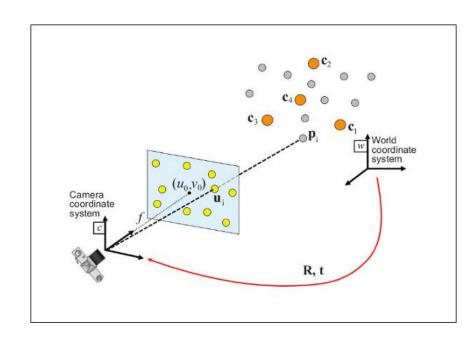
- Features are engineered and placed in the environment.
- They can be easily detected, matched to preassigned labels and tracked.
- Easy computer vision problem.
- We can use QR tags, retroreflective markers, LEDs ...

Natural Features

- Features are automatically discovered, labeled and maintained during the tracking process.
- Remove moving objects from scene.
- This is a hard computer vision problem.
- It has low reliability.

Active Features

- We can also use active features that emit their own light.
- Colored LEDs can be mounted on the surface of a headset or controller.
- May require power source and increase cost and size of tracked object.



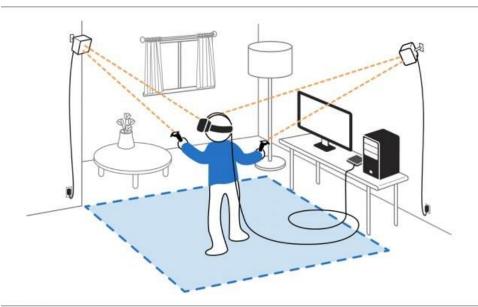
Using Infrared

- Visible to cameras but not to humans.
- IR LEDs can be mounted on devices (eg: Oculus Rift headset).
- Drawback: range is limited because IR must travel from camera to source and back.
- Why do we capture the whole scene?
- How can we conserve energy?
 - Use IR LED and detection photodiode.

PnP Problem

 The problem of estimating the pose of a rigid body given a set of n 3D points in the world and their corresponding 2D projections in the image.

PnP Problem


- You can track 6 DoFs with 3 points.
- With 3 points (P3P) you end up with 4 possible positions.
- With 6 points (P6P), if no four features are co-planar, you can obtain unique solutions.
- The more points the better.

Light House Approach

- Consists of a special emitterdetector pair,
- Solves the visibility problem of camera based techniques.
- Uses lasers to sweep the environment horizontally and vertically.
- Video link

Light House Approach

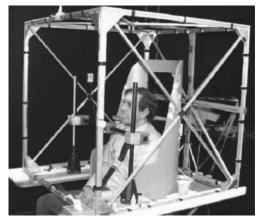
Filtering

- We can use sensor fusion to use data from all sensors, including:
 - Gyroscope
 - Accelerometer
 - Magnetometer
 - Camera LED's/Photodiodes
- Doubly integrate accelerometer data and correct drift using data from camera with a filter.
- We can use complementary filter, Kalman filter or Perceptually tuned gain.

Eye Tracking

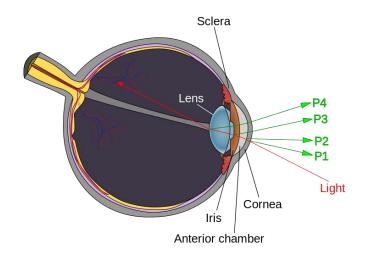
- Eye tracking has four main uses in VR:
 - To accomplish foveated rendering
 - To study human behavior
 - To improve social interaction in VR
 - To develop accessible interaction techniques

Electro-oculography


- Obtains measurements from electrodes placed on the skin around each eye.
- The recorded potentials correspond to eye muscle activity.
- Could detect movements even when eyes are closed.

Scleral Search Coils

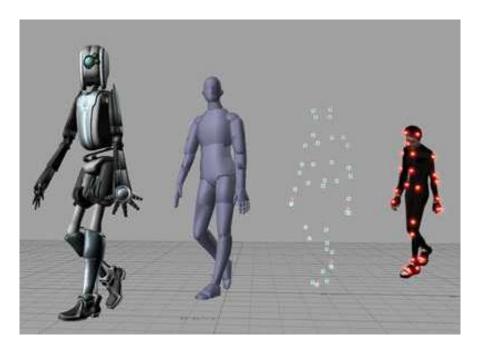
- A wire loop is placed on the sclera of the eye.
- The head is positioned between large Helmholtz coils.
- Most accurate form of eye tracking.
- Can achieve high sampling rate.



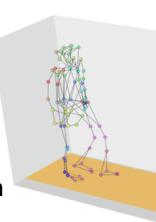
Video Oculography

- Shine IR light onto the eye and sense it's corneal reflection using a camera or photodiodes.
- The reflection is based on Purkinje images.
- This is low cost and minimally invasive.
- This is the most commonly used method today.

HMD Based Eye Trackers


• Eye trackers fitted inside VR HMDs.

• IR Based VOG eye trackers.


Tracking Attached Bodies

- Tracking systems for attached bodies use kinematic constraints to improve their accuracy.
- Determine the joint parameters for a chain of bodies by considering the constraints on the bodies.
- Can use forward or reverse kinematics.

Motion Capture Systems

- Used to bring the motions of real actors are into a virtual world for animation.
- Use cameras with surrounding IR LEDs and retroreflective markers on the actor.

Motion Capture systems

3D Scanning of Environments

- Mapping representation of the world for the purposes of navigation and collision avoidance.
- Localization estimate location with in the world.
- Classical problem in robotics.
- We use SLAM (simultaneous localization and mapping)

Main Ingredients for 3D Model Building

- 1. Extracting 3D point cloud from a fixed location.
 - Using cameras and depth cues, or a camera and a laser.
- 2. Combining point clouds from multiple locations.
 - Stich (fuse) data from multiple sources while considering the sensors pose.
- 3. Converting a point cloud into a mesh of triangles